Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems

نویسندگان

  • Tomoya Murata
  • Taiji Suzuki
چکیده

We consider a composite convex minimization problem associated with regularized empirical risk minimization, which often arises in machine learning. We propose two new stochastic gradient methods that are based on stochastic dual averaging method with variance reduction. Our methods generate a sparser solution than the existing methods because we do not need to take the average of the history of the solutions. This is favorable in terms of both interpretability and generalization. Moreover, our methods have theoretical support for both a strongly and a non-strongly convex regularizer and achieve the best known convergence rates among existing nonaccelerated stochastic gradient methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization

In this paper, we develop a new accelerated stochastic gradient method for efficiently solving the convex regularized empirical risk minimization problem in mini-batch settings. The use of mini-batches is becoming a golden standard in the machine learning community, because mini-batch settings stabilize the gradient estimate and can easily make good use of parallel computing. The core of our pr...

متن کامل

Doubly Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization with Factorized Data

We proposed a doubly stochastic primal-dual coordinate optimization algorithm for regularized empirical risk minimization that can be formulated as a saddlepoint problem. Different from existing coordinate methods, the proposed method randomly samples both primal and dual coordinates to update solutions, which is a desirable property when applied to data with both a high dimension and a large s...

متن کامل

Stochastic Proximal Gradient Descent with Acceleration Techniques

Proximal gradient descent (PGD) and stochastic proximal gradient descent (SPGD) are popular methods for solving regularized risk minimization problems in machine learning and statistics. In this paper, we propose and analyze an accelerated variant of these methods in the mini-batch setting. This method incorporates two acceleration techniques: one is Nesterov’s acceleration method, and the othe...

متن کامل

SGD with Variance Reduction beyond Empirical Risk Minimization

We introduce a doubly stochastic proximal gradient algorithm for optimizing a finite average of smooth convex functions, whose gradients depend on numerically expensive expectations. Our main motivation is the acceleration of the optimization of the regularized Cox partial-likelihood (the core model used in survival analysis), but our algorithm can be used in different settings as well. The pro...

متن کامل

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate method, which alternates between maximizing over one (or more) randomly chosen dual variable and minimizing over the primal variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1603.02412  شماره 

صفحات  -

تاریخ انتشار 2016